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Abstract. Extensive configuration interaction wave functions are determined to calculate the energies of
the inner-shell excited states and the oscillator strengths of the optically allowed inner-shell transitions of
C IV ion. Photoionization cross-sections of the ground and the first excited states of C IV ion are also
obtained by using the R-matrix method. The positions of some inner-shell excited states are redetermined
more accurately by analyzing the resonance structures of the photoionization processes. Some of the results
are compared with other available theories and experiments.

PACS. 32.70.Cs Oscillator strengths, lifetimes, transition moments – 32.80.Hd Auger effect and inner-shell
excitation or ionization – 32.80.Fb Photoionization of atoms and ions

1 Introduction

The energy levels, oscillator strengths and photoionization
cross-sections are the basic parameters of atoms. They
have many applications in plasma physics, Laser physics,
astrophysics, and opacity calculations. Up to now, the
energy levels and oscillator strengths of valence-electron
transitions have been studied extensively, but relatively
less knowledge have been obtained, either from experi-
ment or from calculation, for the inner-electron transitions
or photoionizations of the multiply-charged ion. However,
data about such processes are required for the understand-
ing of plasmas and astrophysical phenomena [1,2]. They
are also of considerable importance for the interpretation
of properties of solids since atoms in condensed matter
matrices most often exist in ionic forms [3].

While many theoretical and experimental studies have
been published about the C IV ion, relatively fewer data
have been reported for the inner-shell and doubly excited
states. Most theoretical calculations have been focused on
lower principal quantum numbers. Yan Gongjing et al.
[4] calculated the energy levels of valence-electron excited
states and transition probabilities of C IV with the prin-
cipal quantum number less than 4. Biemont [5], Martin
and Wiese [6], and Lindgard and Nielsen [7] have reported
oscillator strength calculations of C IV. Peach, Saraph
and Seaton [8], Drew and Storey [9], and McGuinness,
Bell and Hibbert [10] have calculated the photoioniza-
tion cross-sections of C IV, and the last two include the
inner-shell photoionization. The inner-shell spectrum of
carbon has been studied by Gabriel [11], who calculated
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energies of some doubly excited states of the type 1s2l2l′.
Burke [12] has calculated the Stark broadening parame-
ters and collision strengths of C IV by using the R-matrix
method. More recently, Jannitti et al. [13], and Jannitti
et al. [14] have reported 1s electron absorption spectra of
carbon ion obtained with the two laser-produced plasma
technique. From the measured 1s inner-electron absorp-
tion spectra, one can determine the energies of inner-shell
excited states.

The purpose of this paper is to calculate the energies
of the inner-shell excited states and the optical oscillator
strengths of transitions between the low-lying states and
the inner-shell excited states of C IV. For completeness,
we also give some results related to the valence-shell ex-
citations. The calculations involve extensive configuration
interaction (CI), in addition to the configuration repre-
senting the main spectroscopic label of the state, to in-
corporate correlation effects. Then we calculate the pho-
toionization cross-sections of the ground and first excited
states of C IV with more attention putted on the analysis
of the resonance structures. By determining the positions
of the related resonances, we can obtain the energies of
the inner-shell excited states more accurately. The calcu-
lations show that this is an effective method of obtaining
the energies of the inner-shell excited states. The calcu-
lated results are compared with the K-shell photoabsorp-
tion spectra obtained by Jannitti et al. [14].

2 Method of calculation

We have calculated the energies and oscillator strengths
of C IV ion by using the general configuration interaction
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code CIV3 [15]. The CI wave functions take the form

Ψ(γJ) =
∑

aiΦi(αiLiSiJ) (1)

where the configuration state functions {Φi} are associ-
ated with a total spin and orbital angular momentum,
which are coupled with J . The {αi} denotes state labels
such as orbital occupancy and angular momentum cou-
pling schemes of the orbitals. γ denotes a further label for
each level, typically the orbital occupancy and S, L of the
dominant configuration (with the largest |ai|) although in
some cases the mixing between the {Φi} is so strong that
such labeling is not particularly meaningful.

The one-electron orbitals from which the {Φi} are
constructed take the form

u(X,ms) =
1
r
Pnl(r)Yml (θ, φ)χms(σ) (2)

and the radial functions are written as sums of Slater-type
orbital

Pnl(r) =
∑

Cjnlr
Ijnl exp(−ζjnlr) (3)

where we require∫
Pnl(r)Pn′ l(r)dr = δnn′ ; (l < n

′ ≤ n) (4)

so that the orbitals form an orthonormal set.
The parameters of the radial functions are deter-

mined variationally by minimizing specific eigenvalues of a
non-relativistic (LS-coupled) Hamiltonian matrix. In the
present calculations, we have optimized 16 radial func-
tions: 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f , 5s, 5p, 5d, 6s, 6p,
6d, 7s, 7p. 1s, 2s functions are chosen to be HF functions
given by Clementi and Roetti [16] for the ground state
1s22s 2S of C IV.

The wave functions in the form (1) for the C IV ion
are used to calculate the absorption oscillator strengths,
in both length (fl) and velocity (fv) forms. For the
transitions from an initial state Ψi to a final state Ψf

fl =
2∆E
3gi

| 〈Ψi |
N∑
p=1

rp | Ψf〉 | (5)

fv =
2

3gi∆E
| 〈Ψi |

N∑
p=1

∇p | Ψf〉 |, (6)

where ∆E = Ef − Ei, Ei and Ef are, respectively, the
energies of initial and final states and gi = (2Li +1)(2Si +
1) is the statistical weight of the lower state.

The R-matrix method has been discussed in great de-
tail by Burke et al. [17]. The present calculations have
been carried out by using the latest Belfast atomic R-
matrix code [18]. In an R-matrix calculation, the wave
function of the N + 1 electron system is given the form

Ψk(X1...XN+1) =

Â
∑
ij

cijkΦi(X1...XN r̂N+1σN+1)uij(rN+1)

+
∑
j

djkφj(X1....XN+1), (7)

where Â is the antisymmetrization operator to take the
exchange effect between the target electrons and the free
electron into account. Xi stands for spatial (ri) and the
spin (σi) coordinates of the ith electron. The square inte-
grable orbitals are cast as linear combinations of Slater-
type orbitals of equation (3). The parameters ζjnl and
coefficients Cjnl are determined by a variational optimiza-
tion on the energy of a particular state, whilst the pow-
ers of r and Ijnl remain fixed. Ten orbitals (1s, 2s, 2p,
3s, 3p, 3d, 4s, 4p, 4d, 4f) are included in the calcula-
tion of photoionizations. The R-matrix boundary is cho-
sen to be 8.4 a.u. As for the construction of the continuum
states, each of the angular momentum orbitals is expressed
as a linear combination of 20 numerical basis functions.
In forming the (N + 1)-electron configurations in equa-
tion (7), all possible excitations of the 2s-valence electron
and a 1s-core electron into any of the valence orbitals are
allowed for. Five C V target states are utilized. They are
1s2 2S, 1s2s 3,1S, 1s2p 3,1Po.

3 Results and discussions

Using the method described above, we calculated the en-
ergies for the valence excited and inner-shell excited states
and the oscillator strengths of inner-electron and valence-
electron transitions of C IV. In order to get enough CI
terms, only one electron is kept to stay in 1s orbital, the
other two are distributed freely among the orbitals. In Ta-
ble 1 the energies for the valence excited and inner-shell
excited states of C IV are presented together with the ex-
perimental values and the recent theoretical calculation
of Burke [12]. The second column is the present CIV3 re-
sults, with the upper part being the energies of the valence
excited states and the lower part being that of inner-shell
excited states. The third column is the positions of the
resonances appearing in the photoionizations, which will
be discussed later. The next one is the experimental data.
The experimental energy levels of singly excited states are
taken from Moore [19], and the inner-shell excited states
from Jannitti et al. [14]. Jannitti et al. measured the 1s
inner-electron absorption spectrum of the C IV ion with
the two laser-produced plasma technique. The absorption
was due to the transitions from 1s to np, so the experi-
mental results were for 2Po states. Quite good agreement
is found between the present CIV3 calculations and the
experimental energies for the valence and inner-shell ex-
cited states. It can be seen that the relative difference of
calculated and experimental values of the energy levels
of all the valence excited states are less than 0.35% ex-
cept for the 2p 2Po state (0.5%), which is slightly better
than that of Burke [12] for the first few low-lying states.
For the inner-shell excited states, the relative difference
is less than 0.88% for wherever the experimental results
are available. The third column is the energies obtained
by resonance structure analysing, which will be discussed
later.

Table 2 shows the oscillator strengths of valence-
electron transitions: 2S–2Po, 2Po–2S, 2Po–2D for n ≤ 7.
Length and velocity forms are given so as to access the
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Table 1. Energies of valence-shell and inner-shell excited states of C IV (in Ry).

Terms Present CIV3 Resonances Experiment Burke

(1s2)2s 2S 0.0 0.0a 0.0

2p 2Po 0.5933 0.5883 0.5931

3s 2S 2.7534 2.7598 2.7522

3p 2Po 2.9116 2.9167 2.9097

3d 2D 2.9526 2.9606 2.9511

4s 2S 3.6498 3.6573 3.6477

4p 2Po 3.7142 3.7209 3.7116

4d 2D 3.7309 3.7393 3.7292

5s 2S 4.0503 4.0585

5p 2Po 4.0823 4.0903

5d 2D 4.0915 4.0997

6s 2S 4.2637 4.2717

6p 2Po 4.2818 4.2899

6d 2D 4.2941 4.2954

7s 2S 4.3938 4.3983

7p 2Po 4.4016 4.4099

1s2s2 2S 21.5173 21.420

1s2p2 2S 23.1853 23.033 22.98b

1s2s(3S)3s 2S 24.8251 24.638

1s2s(1S)3s 2S 25.0406 24.924

1s2s(3S)4s 2S 25.7376 25.518

1s2s(1S)4s 2S 25.8403 25.726

1s2s(3S)5s 2S 26.0693 25.963

1s2s(1S)5s 2S 26.1869

1s2s(3S)6s 2S 26.3886

1s2s(3S)2p 2Po 22.1360 22.035 22.04

1s2s(1S)2p 2Po 22.4749 22.306 22.30

1s2s(3S)3p 2Po 24.8754 24.710 24.72

1s2s(1S)3p 2Po 25.1944 25.060 25.13

1s2s(3S)4p 2Po 25.8727 25.630 25.65

1s2s(1S)4p 2Po 26.1361 26.050 26.08

1s2s(3S)5p 2Po 26.2117 26.100 26.12

1s2s(1S)5p 2Po 26.5339 26.449 26.48

1s2s(3S)6p 2Po 26.4245 26.307 26.32

1s2s(1S)6p 2Po 26.7404 26.65

1s2s(3S)7p 2Po 26.5488 26.542

1s2p2 2P 22.7235 22.63

1s2p2 2D 22.6771 22.526 22.63

1s2s(3S)3d 2D 25.0698 24.891

1s2s(1S)3d 2D 25.3318 25.204

1s2s(3S)4d 2D 25.8726 25.745

1s2s(1S)4d 2D 26.1701 26.114

1s2s(3S)5d 2D 26.2387 26.165

1s2s(1S)5d 2D 26.5449

1s2s(3S)6d 2D 26.5678
a Ref. [19], b Ref. [14]
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Table 2. Oscillator strengths of valence-electron transitions
for C IV.

Transitions fl fv Burke

2s−2p 0.2915 0.3073 0.2928

2s−3p 0.1999 0.1972 0.1986

2s−4p 0.0612 0.0592 0.0592

2s−5p 0.0266 0.0258

2s−6p 0.0145 0.0140

2s−7p 0.0088 0.0084

2p−3s 0.0370 0.0392 0.0373

3s−3p 0.4850 0.4969 0.4855

3s−4p 0.2017 0.1999 0.1998

3s−5p 0.0637 0.0636

3s−6p 0.0288 0.0302

3s−7p 0.0150 0.0168

2p−4s 0.0065 0.0074 0.0068

3p−4s 0.0819 0.0828 0.0815

4s−4p 0.6678 0.6672 0.6703

4s−5p 0.2105 0.2072

4s−6p 0.0735 0.0692

4s−7p 0.0368 0.0324

2p−5s 0.0022 0.0028

3p−5s 0.0154 0.0156

4p−5s 0.1292 0.1270

5s−5p 0.8458 0.8501

5s−6p 0.2257 0.2306

5s−7p 0.0713 0.0768

2p−6s 0.0009 0.0015

3p−6s 0.0062 0.0063

4p−6s 0.0255 0.0251

5p−6s 0.1773 0.1816

6s−6p 0.9984 1.0827

6s−7p 0.2563 0.2313

2p−3d 0.6492 0.6489 0.6512

2p−4d 0.1222 0.1218 0.1231

2p−5d 0.0444 0.0441

2p−6d 0.0875 0.0835

3p−3d 0.0410 0.0584 0.0585

3p−4d 0.5426 0.5419 0.5421

3p−5d 0.1301 0.1281

3p−6d 0.1743 0.1788

3d−4p 0.0165 0.0164

4p−4d 0.1010 0.1080 0.1012

4p−5d 0.5123 0.5026

4p−6d 0.3706 0.3513

3d−5p 0.0032 0.0031

4d−5p 0.0397 0.0395

5p−5d 0.1512 0.1806

5p−6d 1.0970 0.9044

wave functions. We also include the calculated values
based on R-matrix close-coupling method obtained re-
cently by Burke [12] for comparison. One can see that the
agreement is reasonably good, the relative differences be-
tween our length and velocity forms being less than 5% for
most transitions. For the transitions of ns 2S–n′p 2Po, the
oscillator strengths are larger and the agreement of length
and velocity forms is better when ∆n = n′ − n = 0, 1 is
satisfied than in other cases. Take 2s−np transitions as
examples. For 2s−2p and 2s−3p, the relative differences
between the length and velocity forms are 2.3% and 1.4%
respectively. While for 2s−4p, 2s−5p, 2s−6p and 2s−7p,
the relative differences are 3.3%, 3.3%, 3.4%, and 4.7%,
respectively. For transitions of np 2Po–n′d 2D, similar con-
clusion can be drawn for the cases of ∆n = n′ −n = 1, 2.
From Tables 1 and 2, we conclude that the wave functions
we obtained are very good, and thus the energy levels and
oscillator strengths are reliable.

Table 3 shows the oscillator strengths of inner-
electron transitions 1s22s 2S−1s2s(3,1S)np 2Po and 1s22p
2Po−1s2s(3,1S)nd 2D in C IV, together with the rela-
tive values to the oscillator strength of the first transition
1s22s 2S–1s2s(3,1S)2p 2Po in length and velocity forms.
The agreement between the length and velocity forms is
also reasonably satisfactory. The relative values show the
basic trends of the two series: the oscillator strengths of
transitions from the ground state 1s22s 2S to the two
Rydberg series 1s2s(3,1S)np 2Po decrease with the princi-
pal quantum number n. This can be understood qualita-
tively by the general trends of oscillator strengths [20]. For
a Rydberg series of spectrum lines, among other factors,
such as transition energies and angular momentum, the
oscillator strengths and the effective quantum numbers nf

approximately have the following relation

fl(niliγJM − njljγ′J ′) ∝ (n∗j )
−3.

So with the increase of the principal quantum number
n the oscillator strengths decrease quite fast. For the
two transition of 1s22s 2S–1s2s(3S)2p 2Po and 1s22s 2S–
1s2s(1S)2p 2Po, the oscillator strength of the former is
much larger than the latter, although the configuration of
the final state is the same (1s2s2p). This difference may be
accounted for by the angular momentum portion. The dif-
ferent angular momentum couplings make them differing
considerably.

In order to test the reliability of our CIV3 results, we
performed a five-state close-coupling calculation for the
ground and first excited states of C IV. From the res-
onance structures of photoionizations, we can determine
the positions of the inner-shell excited states, and thus
their energies more accurately. For the ground state 2S
of C IV, there is only one kind of allowed final channel
2Po. Figure 1 shows the general behaviour of the pho-
toionization cross-section of the ground state of C IV.
The ground state ionization potential derived for C IV
is −4.7363Ry, differing by about 0.1% from the observed
energy of −4.7421Ry, which are the relative energy to the
ground state of C V target. From the inspection of Fig-
ure 1, it can be seen that the photoionization cross-section
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Table 3. Oscillator strengths of inner-shell transitions for C IV.

Transitions fl relative values fv relative values

(1s2)2s 2S−1s2s(3S)2p 2Po 0.4784 1.000 0.4438 1.000

(1s2)2s 2S−1s2s(3S)3p 2Po 0.0635 0.133 0.0567 0.128

(1s2)2s 2S−1s2s(3S)4p 2Po 0.0308 0.064 0.0272 0.061

(1s2)2s 2S−1s2s(3S)5p 2Po 0.0106 0.022 0.0088 0.020

(1s2)2s 2S−1s2s(3S)6p 2Po 0.0065 0.014 0.0054 0.012

(1s2)2s 2S−1s2s(3S)7p 2Po 0.0031 0.006 0.0023 0.005

(1s2)2s 2S−1s2s(1S)2p 2Po 0.0583 1.000 0.0556 1.000

(1s2)2s 2S−1s2s(1S)3p 2Po 0.0355 0.609 0.0322 0.579

(1s2)2s 2S−1s2s(1S)4p 2Po 0.0073 0.125 0.0066 0.119

(1s2)2s 2S−1s2s(1S)5p 2Po 0.0038 0.065 0.0035 0.063

(1s2)2s 2S−1s2s(1S)6p 2Po 0.0014 0.024 0.0015 0.027

(1s2)2s 2S−1s2s(1S)7p 2Po 0.00063 0.011 0.00075 0.013

(1s2)2p 2Po−1s2p2 2D 0.1384 0.1308

(1s2)2p 2Po−1s2s(3S)3d 2D 0.0050 0.0044

(1s2)2p 2Po−1s2s(1S)3d 2D 0.0029 0.0024

(1s2)2p 2Po−1s2s(3S)4d 2D 0.0009 0.0007

(1s2)2p 2Po−1s2s(1S)4d 2D 0.0000 0.0001
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Fig. 1. The total photoionization cross-section of the ground
state of C IV. Solid line refers to the length form, dashed one
to the velocity form.

first decreases monotonously from the ionization thresh-
old to about 21.6Ry, then exhibits complicated resonance
structures. In order to see clearly the resonance structures,
an expansion is given in Figure 2. Below the first and sec-
ond excitation threshold, we have identified the resonance
series to be 1s2s(3,1S)np 2Po Rydberg series. The corre-
sponding energies of the resonances are tabulated in the
third column in Table 1. Excellent agreement is obtained
between the calculated and experimental results. The rel-
ative differences are less than 0.3%, most of which are
about 0.1%. This also proves that our calculated results
are reliable.

For the photoionization of the first excited state 1s22p
2Po of C IV, there are three allowed final channels 2S, 2P
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Fig. 2. The same as in Figure 1, but expanded to show the
resonance structures more clearly. The labels are on the left
sides of corresponding resonances except that indicated by lines
and 1s2s(1S)2p 2Po and 1s2s(3S)7p 2Po, the later two are on
the right for convenience.

and 2D according to the selection rule. The total cross-
section is the sum of the three partial ones. The par-
tial waves 2S and 2D have contribution from the first
ionization threshold 4.1467Ry, while the partial wave 2P
opens from the fourth ionization threshold 1s2p 3Po, i.e.
26.5197Ry. So we only give the partial cross-sections of
the first two partial waves. Figure 3 shows the partial
cross-sections of: (a) 2Po–2S and (b) 2Po–2D. For brevity,
we do not give the total cross-section. The energy step
is 0.0002Ry to show the resonance structures. The solid
lines refer to the length form and the dashed lines to ve-
locity form. From the inspection of Figures 3a and 3b
one can see that close agreement is found between the
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Fig. 3. The meaning of the lines are the same as in Figure 1,
but for the partial cross-sections of: (a) 2S and (b) 2D for the
first excited state 1s22p 2Po.

length and velocity forms. This agreement is needed in
photoionization calculations. The dominant contribution
comes from 2Po–2D partial cross-section in most photon
energy range, except in the range of 19–21.6Ry the con-
tribution from 2S partial cross-section is larger than 2D.
The partial cross-sections exhibit complicated resonance
structures. They are dominated by the autoionizing res-
onances belonging to different Rydberg series. We have
analyzed these Rydberg series. For brevity, we only give
some results of the 2S, 2D partial cross-sections near the
threshold in Figures 4a and 4b. From the identification of
Rydberg series, one can obtain the resonance energy, and
hence the energies of inner-shell excited states.

For partial 2S, the first resonance is caused by the au-
toionizing state 1s2s2 2S, the second one by the autoion-
izing state 1s2p2 2S. Some other resonances are shown in
Figure 4a. They are caused by the following Rydberg se-
ries: 1s2s(3S)n′s 2S, 1s2s(1S)n′s 2S, 1s2p(3Po)n′p 2S, and
1s2p(1Po)n′p 2S. For 2D partial wave, the first resonance
is caused by the autoionizing state 1s2p2 2D, the others by
the following Rydberg series: 1s2s(3S)n′d 2D, 1s2s(1S)n′d
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Fig. 4. (a) and (b) are, respectively, the same as (a) and (b) in
Figure 3, but to show the resonance structures in an expanded
scale. The labels are on the left sides of corresponding reso-
nances except that indicated by lines. Please be noted that in
(a) the resonances of 1s2p(3Po)3p 2S and 1s2s(3S)4s 2S, and
in (b) the resonances of 1s2p(3Po)3p 2D and 1s2s(1S)3d 2D,
are so close that they can not be seen clearly.

2D, 1s2p(3Po)n′p 2D, 1s2p(1Po)n′p 2D, 1s2p(3P o)n′f 2D,
and 1s2p(1Po)n′f 2D. The results are also tabulated in
the third column in Table 1. Excellent agreement is ob-
tained for the inner-shell excited states between our results
and the observed values of Jannitti [14]. For example, the
relative error for the inner-shell excited states 1s2p2 2D,
2S are 0.02% and 0.3% respectively.

In the Figures 2 and 4, one can see that there are
several series of autoionizing resonances and the widths
of them differ widely within a series. This can be un-
derstood from the viewpoint of multichannel quantum
defect theory (MQDT) [21]: for a Rydberg series of au-
toionizing resonances, the widths of resonances are pro-
portional to the square of the coupling matrix elements
between the autoionizing Rydberg states and the ioniza-
tion channel and in inverse proportion to the cube of the
effective quantum number n∗ of the autoionizing state.
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The decrease of the widths of the autoionizing resonances
within a series with the principal quantum numbers n is
clearly demonstrated in Figures 2 and 4 for the labeled
Rydberg series of autoionizing resonances. For example,
in Figure 2, the first two states (1s2s) 3S2p and (1s2s)
1S2p of the two labelled series have the largest widths be-
cause of their smallest effective quantum numbers. With
the increasing of n, the widths become more and more nar-
rower. With the same configuration but different symme-
tries, for examples, 1s2p2 2D and 1s2p2 2S, the widths of
resonance structures have the same order. So the autoion-
izing widths are more dependent on the effective quantum
numbers than on the coupling matrix elements.

In conclusion, we have calculated the wave functions,
energies, oscillator strengths of the inner-shell excited
states and photoionization cross-sections of the ground
and first excited states in C IV, with the emphasis on
the energies of the inner-shell excited states. Good agree-
ments among the CIV3 results, the results determined by
the resonance positions of the R-matrix calculations, and
the experiments show that our results are reliable.
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